
www.manaraa.com

RE’09 SPECIAL ISSUE

A controlled experiment to assess the impact
of system architectures on new system requirements

Remo Ferrari • James A. Miller • Nazim H. Madhavji

Received: 19 October 2009 / Accepted: 1 February 2010 / Published online: 6 March 2010

� Springer-Verlag London Limited 2010

Abstract While much research attention has been paid to

transitioning from requirements to software architectures,

relatively little attention has been paid to how new

requirements are affected by an existing system architec-

ture. Specifically, no scientific studies have been conducted

on the ‘‘characteristic’’ differences between the newly

elicited requirements gathered in the presence or absence

of an existing software architecture. This paper describes

an exploratory controlled study investigating such

requirements characteristics. We identify a multitude of

characteristics (e.g., end-user focus, technological focus,

and importance) that were affected by the presence or

absence of an SA, together with the extent of this effect.

Furthermore, we identify the specific aspects of the archi-

tecture that had an impact on the characteristics. The study

results have implications for RE process engineering, post-

requirements analysis, requirements engineering tools,

traceability management, and future empirical work in RE

based on several emergent hypotheses resultant from this

study.

Keywords Requirements engineering �
Software architecture � Empirical study � Controlled study �
Software engineering � Software process

1 Introduction

While much research attention has been paid to transition-

ing from requirements to system architectures (SA)1 [39],

relatively little attention has been paid to how new

requirements are affected by an existing SA. Indeed, it was

over a decade ago, in a panel session [38], when several

concerns and thoughts expressed the need to consider SA

during requirements engineering (RE), for example: ‘‘We

still do not have a clear understanding of the role of soft-

ware architecture in requirements engineering’’ [38];

‘‘Software architecture must be considered during require-

ments engineering to ensure that requirements are valid,

complete, consistent, feasible, etc.’’ [31]. Also, SWEBOK

[17]—the software engineering body of knowledge—for

example, does not describe any practices to deal with this

issue.

Thus, to explore this matter further, given its thin

baseline, we first conducted a survey [28] of 17 experi-

enced RE and SA researchers and practitioners from North

America and Europe. We found that the average rating of

the importance of considering existing architecture when

engineering new requirements was 4.5 (on a 5-point Likert

scale)—implying that the respondents strongly agreed with

this concept. Despite this, several respondents noted in the

qualitative part of the survey that, in actual practice, many

organizations neglect this consideration, or perform anal-

ysis only on existing high-level features (i.e., the require-

ments) of the current system, and not on the system’s

architecture.

Although there is curiosity in the RE community about

the impact of SA on RE, and that there is a dichotomy

A preliminary version of this paper was published in [29].

R. Ferrari (&) � J. A. Miller � N. H. Madhavji

Department of Computer Science,

University of Western Ontario, London,

ON N6A 5B7, Canada

e-mail: rnferrar@uwo.ca

N. H. Madhavji

e-mail: madhavji@csd.uwo.ca

1 For the rest of the paper, the acronym SA refers to System (or

Software) Architecture as a software artefact.

123

Requirements Eng (2010) 15:215–233

DOI 10.1007/s00766-010-0099-3



www.manaraa.com

between theory and practice, to the best of our knowledge,

no scientific studies have ever been conducted to investi-

gate this issue. Thus, we still do not truly know the

‘‘characteristics’’ of the newly elicited requirements in

terms of how they are affected by the presence or absence

of a SA in the RE process.

For example, first, a general question is: to what extent

are new requirements affected by the existing SA? Also,

the extent to which they are affected, what are the char-

acteristics of this effect? For instance, to what degree are

the requirements ‘‘user needs’’ focused, ‘‘technological

needs’’ focused, or ‘‘architecturally focused’’? etc. There

are a number of such questions to which the RE research

and practice community has no specific answers.

Having a grounded body of knowledge on these issues

could benefit RE practice in a number of ways. For

example, it could help in determining:

• when in the RE process one should examine the SA to

ensure fitness of the new requirements;

• when in a product’s lifecycle it is advantageous not to

be influenced by the existing SA;

• the extent to which the system’s requirements are

misaligned with the business goals; and

• the requirements characteristics that should be tweaked

in order to bring them back in line with the business

goals.

Ultimately, such investigations are aimed at increasing

the general quality and relevance of the system, improving

RE processes, and at improving business efficiency and

profitability.

Motivated by these issues, we conducted an exploratory,

controlled, study to characterize the differences in the

newly elicited requirements in the presence or absence of

the SA. The study involved two types of groups. One type

of group (the SA-group) received the SA of an existing

(banking) system; whereas the second type of group (non-

SA-group) did not receive the SA of this system. Both

types of groups received the same initial requirements for

this system, and they were both asked to enhance the

system’s requirements given the same problem description

(or project goals).

This paper describes this empirical study and its findings in

quantitative terms. For example, specific biases of various

requirements characteristics in the presence/absence of the

existing SA are given and interpreted. These findings con-

stitute new knowledge and are the chief contribution of the

paper. The paper also describes the implications of the find-

ings for both RE practice (e.g., RE process engineering, post-

requirements analysis, traceability management, etc.) and RE

research (e.g., seven emergent hypotheses, and RE tools).

This paper is a significantly enhanced version of [29].

The additions to this paper include:

• The investigation of a new research question regarding

specific aspects of the SA that affected the

requirements.

• A significantly expanded related work section.

• More information given on the data analysis conducted.

• Extended implication section including new hypotheses

for further empirical studies.

• Elaboration of empirical study procedures employed.

• Appendix describing data collection instrument used.

The rest of the paper is structured as follows: Sect. 2

describes related work; Sect. 3 describes the empirical

study; Sect. 4 analyzes the data, presents the results, and

makes interpretations; Section 5 discusses the implications

of the findings; and Section 6 concludes the paper.

2 Related work

In this section on related work, we focus on two key

aspects: (1) observations, commentary, and empirical work

on the role of SA in RE and (2) recent technological-based

research on requirements evolution. Subsection 2.3 con-

cludes with a reflection on the current state of research

described in Subsects. 2.1 and 2.2. Other aspects that are

related (for example, technology to transition from RE to

SA, or empirical studies focused on requirements-oriented

issues while architecting) are omitted here because they are

not as relevant as the two aspects identified earlier. The

reader can refer to [13] for a thorough discussion of related

works focused on the transition from RE to SA.

2.1 Role of SA in RE

As early as 1994, a panel session at a RE conference was

held to deliberate on the role of SA in RE [38]. This marks

perhaps the first attempt by the RE research community to

recognize this relationship.2 The consensus in this panel

session was that this relationship is an important one but

was little understood.

In this same session, Jackson [19] gave four key reasons

as to why RE and architecting are best treated as inter-

weaving processes. First, RE can be ‘‘very tricky’’ in that,

often, it can be simpler to start by building the system right

away, even if only in outline. Second, evaluating possible

system designs early can help gain an important under-

standing of which requirements might not be feasible,

saving time, and money. Third, requirements can some-

times be reasonably embedded in system design, elimi-

nating the need for formal specification during RE. Finally,

2 Related workshops, such as STRAW 2001 and 2003 [39] focused

mainly on transitioning from RE to SA and not on the role of SA in

RE.

216 Requirements Eng (2010) 15:215–233

123



www.manaraa.com

there is evidence that successful developers are those who

are able to move relatively more freely between stages (i.e.,

RE, architecting, design, testing, etc.) within the develop-

ment cycle.

Shortly thereafter, in 1995 [11], El-Emam and Madhavji

found four factors for RE success in information systems

that deal with architecture or the system (the first being

relevant for this study): the adequacy of diagnosis of the

existing system (which includes SA); the fit between

the architecture and the way users work; the fit between the

recommended requirements solution and the strategic

orientation of the organization; and the fit between the

recommended solution and the technical orientation of the

organization.

Subsequently, hints can be found in the pedagogical

literature [24] promoting the need to consider the existing

system in the RE process. More recently, in 2000, Nuse-

ibeh and Easterbrook [31] stated that we needed a ‘‘better

understanding of the impact of software architectural

choices on the prioritization and evolution of require-

ments.’’ In [30], Nuseibeh describes the ‘‘twin-peaks’’

model, which captures the iterative relationship between

RE and architecting. An important aspect of this model is

that the architecting process can and should feed back into

the RE process (as well as vice versa).

In a recent study [28], Miller, Ferrari, and Madhavji

investigated the different types of effects an SA has on

requirements decisions. They identify and quantify four

principal ways in which a previous architecture can affect

evolving requirements work, i.e., as an enabler (30%), as a

constraint (25%), as an influence (6%), or the null case

(39%). This means that approximately 60% of the deci-

sions were affected by the architecture, highlighting the

impact an existing architecture has on RE.

While these are some of the key works highlighting the

role of SA in RE, the body of knowledge on this topic is

fairly thin overall and has basically remained static.

2.2 Requirements evolution

An area of research that is related to our work is require-

ments evolution, in particular from the viewpoint of

methods, notations, and tools development. In the follow-

ing subsection, we highlight recent research in this area

from prominent RE literature sources. Because our study is

focused on both the absence and presence of SA in RE, we

include research that does not, explicitly or implicitly,

consider the existing SA in requirements evolution.

In [41], the authors present a method for requirements

engineers and project managers to perform software evo-

lution in the domain of embedded systems. The method’s

primary purpose is to aid in systematic reasoning on the

identification of volatile requirements and planning

changes to the architecture. The method is composed of

four phases. The first phase is preparation for volatility

analysis and is meant to establish the timeframe restricting

the current volatility analysis and identifying the types of

components that will be involved in the changes. The

second phase is environmental change anticipation where

the primary tasks are to identify and characterize changes

that may occur in the system’s environment within the

identified timeframe. Specifically, the analyst needs to

identify actors, roles, external events, and environmental

facts that could cause changes. The third phase is the actual

change impact analysis, which is composed of identifying

the adaptation needs, such as identifying features to be

affected and estimating their business impact. The result of

this phase is a prioritized list of adaption needs that should

be included for implementation. The final phase is the

product evolution planning, where the analysts establish

when and how the previously high-priority adaptation

needs are to be introduced into the system. The result of the

method is a plan for product evolution based on the high-

priority adaptation needs.

In [12], the authors present a framework that defines

challenges for RE caused by co-evolution and also show

which and how existing requirements technologies address

the identified challenges. Their framework is structured

around five dimensions which each correspond to a

RE-related issue regarding co-evolution. These dimensions

were determined from their experience in three industrial

evolution projects. To summarize, the five dimensions are:

(1) understanding the consistency relationship between

RE-related artifacts and other co-evolving artifacts from

outside RE (e.g., design, testing, code, ), (2) formalizing

notations to express evolution requirements, (3) elicitation

of evolution requirements, (4) propagating identified

changes to processes outside RE, and (5) verifying the

relationships between the proposed changed system entities.

The authors conclude that no particular existing technology

addresses all of the above-mentioned dimensions of

co-evolution and therefore a research gap exists in this area.

In [20], the authors propose the use of a domain analysis

approach to identify and document current and future

requirements in an application domain. The author’s pri-

mary motivation for this approach is that defining a long-

term strategy for software product evolution is an extre-

mely difficult task because the requirements and future

trends must be anticipated in advance. They argue that a

domain analysis technique can be used for this anticipation

of future requirements, while recognizing the problem that

ongoing domain analysis for evolutionary purposes can be

costly (in terms of time and cost). Thus, they propose to use

an instantiation of the PuLSE-CDA (customized domain

analysis) method [4], which aims to overcome this problem

by systematically coordinating domain analysis effort with

Requirements Eng (2010) 15:215–233 217

123



www.manaraa.com

necessary product evolution activities. The primary goal to

facilitate a cost-effective approach is to only model a sub-

domain where only the key future changes are modeled, in

order to reduce excess modeling of irrelevant information.

In short, the main steps are to : (1) analyze existing change

requests from maintenance and marketing, in addition to

analyzing existing application domain knowledge, which

provides an initial list of sub-domain candidates, (2) map

the identified candidates to logical software components,

(3) model and refine each logical component’s relevant

data attributes and processes in which the components are

involved. The output of this method is a map of inter-

related domain models (and logical components) that are a

subset of the overall application domain. Each component

can then be implemented and integrated with the existing

system.

In [6], the authors investigate requirements evolution

from the perspective of scenarios. Specifically, they derive

a scenario evolution taxonomy from the investigation of

twelve case studies spanning over 200 scenarios; each of

these studies comprised the analysis of a software project

during its evolutionary phase. The authors state, based on

the findings from the case studies, that the main challenges

in scenario evolution are in understanding and managing

the relationships between scenarios; an individual scenario

can often be related to many other scenarios and in the

projects examined in the case study, there was minimal

technological support for this problem. The resultant sce-

nario evolution taxonomy then describes the classification

and formal heuristics for semi-automated detection of

scenario relationships, as well as an initial suggestion for a

formal notation that can be used for scenario relationship

representations.

In [14], the authors propose a simulation model to help

project managers and requirements analysts understand

how requirements volatility impacts a given software

development project. The model is built on results from an

empirical survey administered to software project manag-

ers and developers, where more than 50 parameters (such

as number of requirements change requests per release,

requirements defects detection rate during design, per-

centage of perceived job size increase due to requirements

change) were derived from the survey data. Based on this

theoretical model, the authors designed a software simu-

lator that can be used by developers to input project

parameters that are related to requirements volatility and

determine the potential impact for a given project of

changing requirements. The simulator was used on two

industrial projects to explore the relationship between

requirements volatility and its impact on software projects.

The results of these case studies show that there were

significant simulated cost, schedule, and quality impacts

due to requirements volatility.

In [36], the authors tackle the problem of requirements

evolution with a formal requirements specification model-

ing approach and tool. Currently, this approach works on

specifications modeled using i* [43]. The aim of the

approach is the precise definition of the change require-

ments, and the approach does this by facilitating the

modeling of specific gaps between the current requirements

specification and the target specification. The approach

uses a generic gap typology where each gap is associated to

a predefined type of requirements change (such as add

actor and remove feature), and these are then associated

with gap operators which perform the actual transforma-

tions in the i* model. The approach and tool was validated,

and the authors estimate that approximately 50% time was

saved eliciting change requirements using this approach vs.

a manual approach.

In [7], the author’s raise the problem that in large soft-

ware projects, the number of changes and enhancements

requested for inclusion in the next release often exceeds the

resources available to implement those changes. Therefore,

technological support is needed to incorporate the multi-

tude of factors (such as approval for finance for the change,

development time, and human expertise required) that

influence these possible changes into an improved set of

information for the purpose of facilitating better decision

making. The authors propose the use of influence diagrams,

which are an extension to Bayesian nets [9], to formalize

the combining of the different change factors to address the

requirements change problem. Influence diagrams, as

argued by the authors, are suitable because they model both

decision-making trees along with random chance events.

The combination of these two dimensions adequately

covers both fixed and volatile project factors that can

influence decisions to implement certain requirements

changes.

2.3 Reflection on research

Having discussed the current knowledge pertaining to the

role of an SA in RE and requirements evolution, in this

subsection, we reflect on the current state of research in

these areas. As discussed In Sect. 2.1, as early as 1994,

researchers discussed the importance of the role of an SA

in RE [38]. A few other works have commented on this

issue since then [11, 28, 31]. However, beyond these works

there has been, to the best of our knowledge, little research

conducted in the area of the role of an SA in RE. Despite

the sparse research in this specific issue, there is a wide

range of technological-based research conducted in the

area of requirements evolution, as described in Sect. 2.2,

which are meant to improve the RE process in the context

of an evolving system. However, the work is often focused

solely on the RE process; downstream activities such as

218 Requirements Eng (2010) 15:215–233

123



www.manaraa.com

architecting, coding, testing are treated as black-box pro-

cesses, and there is thus a lack of explicit recognition of the

interaction of RE with SA as highlighted as being impor-

tant, for example, in Nuseibeh’s Twin-Peaks Model [30].

Furthermore, there is a lack of empirical evidence regard-

ing the different requirements characteristics, and how

these characteristics are impacted by the presence or

absence of an SA during systems evolution. The empirical

study presented in this paper is meant to present detailed

quantitative findings on the impact of an SA on require-

ments characteristics, which can then be fed back into

technological research as described in Sect. 2.2.

Though the importance of conducting empirical studies

in software engineering (SE) has been recognized [40, 42],

Shaw’s analysis [37] of research papers presented at a

prominent 2002 SE conference suggests that only 12%

were submitted in the category of ‘‘Design, evaluation or

analysis of a particular instance’’ and 0% in the category of

‘‘Feasibility study or exploration’’. In [13], we presented

our own analysis of published papers. In the fields of RE

and SA, since the year 2000, only approximately 15% of

the published papers were in the above-mentioned cate-

gories, suggesting that studies such as the work described

in this paper are currently rather rare. Our work is meant to

help in filling this research gap.

3 The study

We now describe the core parts of the study. Section 3.1

describes the research paradigm used, GQM [2], to state

the goal, questions, and metrics for this study. Section 3.2

describes the study design. Section 3.3 describes the study

hypothesis. Section 3.4 describes the participants. Sec-

tion 3.5 describes the RE project. Section 3.6 describes the

data collection procedures. Finally, Sect. 3.7 describes

threats to the study.

3.1 Goal, research questions, and metrics

This study followed the Goal-Question-Metric (GQM)

paradigm, which helps in ensuring that measurements

taken in the study are aimed at answering specific research

questions which, in turn, help in achieving the overall goal

of the study [2].

The overall goal of this investigation was:

To better understand the characteristics of requirements

elicited in the absence or presence of a SA.

In order to obtain a quantitative insight into the elicited

requirements, we decomposed the notion of a requirement

into specific, measurable characteristics. Table 1 defines

these characteristics, which are rooted in three sources:

those which are prominent in the literature (such as

requirement type); those which would intuitively be of

interest to industry (such as cost); and those which relate to

an architecture (such as architectural relevance [3]). Five

researchers subsequently validated these characteristics,

and their associated metrics, as an acceptable set of vari-

ables for the study.

Linking the overall goal and the characteristics descri-

bed in Table 1 is the following question aimed at achieving

the goal:

Q1 Which requirements characteristics were affected,

and to what extent, by the presence or absence of the SA?

Our objective now is to determine whether or not the SA

(an independent variable) has an impact on the require-

ments characteristics (the dependent variables). We can

accomplish this by comparing the requirements sets elic-

ited by two different types of study groups, one group

which is comprised of teams that have access to the SA

while doing RE (the SA-groups) and the other set of teams

do not have access to the SA (the non-SA-groups). To

complement and probe deeper into the findings from Q1,

we raise the following research question.

Q2 Which specific aspects of the SA affected the

requirements?

In this question, we are examining the specific aspects of

the architecture and how they affected the requirements

characteristics that exhibited significant differences (i.e.,

findings from Q1). To investigate this question, the

requirements analysts teams, during the RE process, had to

explicitly state when an architectural aspect affected their

RE work. We then take the intersection between the

identified affected architectural aspects and the require-

ments characteristics with significant differences from Q1.

3.2 Hypothesis

Because this study was undertaken without a significant

underlying theory (on how requirements characteristics

are affected by software architectures) on which to build

a priori hypotheses, this study is best described as an

exploratory study [35]. Contrary to a dogmatic viewpoint,

hypothesis testing can be done in exploratory studies but

is not meant to confirm existing scientific theory as in a

purely experimental design. Rather, the results of the

hypothesis testing here provide initial indications on

which future experimental research can be conducted

[35]. As a result, the only hypothesis that will be dis-

cussed in this paper are the ‘‘null hypothesis’’ which is

necessary for null hypothesis statistical testing (NHST).

The null hypothesis for a given metric M, where M is a

requirements characteristic described in Table 1, can be

generally stated as:

Requirements Eng (2010) 15:215–233 219

123



www.manaraa.com

H0 the presence of a SA has no impact on M.

If NHST leads to the rejection of this hypothesis for any

metric M then we can say that ‘‘characteristic M is affected

by the SA’’.

3.3 Study design

This is a post-test only control group design experiment

[22]. This type of design involves administering a treat-

ment (i.e., SA documentation) to one type of groups (in this

case, the SA-groups), with observations taken only at the

end following the treatment. These observations are con-

trasted against the non-SA-groups that did not receive the

treatment. It is from this contrast that the results of this

study are drawn. A visual depiction of this design is given

later; where the O represents observation, X represents

treatment, and R represents random assignment. This study

design was used because it falls in the category of strong

designs [22] and alleviates many internal validity threats in

a multiple group design.

SA-Groups R -------X -------------- O

Non-SA Groups R -------------------------O

The specific type of experimental design that our study

falls under is a nested ANOVA design [35]. This design is

used when there is one measurement variable (i.e.,

requirements characteristic) and two or more nominal

variables (i.e., categorical variables). In our study, there are

two nominal variables: (1) the type of study group

(SA-groups vs. non-SA-groups) and (2) the different

requirements teams. These nominal variables are nested,

meaning that each requirements team belongs to only one

category of the higher-level nominal variable (i.e., the

SA-groups vs. non-SA-groups). We used this design

Table 1 Requirement characteristics

1 Focus on cost The degree to which the cost factor, concerning the system’s content, is prominent

in the requirement

2 Focus on time The degree to which the development time factor, concerning the system’s

content, is prominent in the requirement

3 Focus on quality The degree to which the quality factor, concerning the system’s content, is

prominent in the requirement

Note: a requirement can be prominent in one or more of

the above-mentioned three characteristics

4 Focus on user’s needs The degree to which the requirement is focused on the needs of the end-users.

End-user issues include different ways of accessing the system, end-user

features provided, usability requirements, etc.

5 Focus on client’s needs The degree to which the requirement is focused on the needs of the client (i.e., the

needs of the organization itself.) Note the difference from (4) earlier

6 Focus on technological needs The degree to which the requirement is focused on technological needs.

Technological issues include the ‘‘back-end’’ server, choice of algorithms and

data types, interface specifications, communication protocols, data access

mechanisms, etc. that are important in terms of ensuring that the system will be

technically sound

7 Testability The degree to which it can be shown that a requirement can be tested against

8 Implementability - The level of effort required to implement a requirement

9 Importance - The degree to which the success of the system depends on the implementation of a

requirement

10 Architectural relevance - The degree to which the requirement will have an impact on the architecture, e.g.,

architectural-driver. Note: not all ‘‘important’’ requirements are architecturally

relevant, e.g., a common but basic requirement

Scale: Scale for characteristics (1–10): These were measured using a 7-point Likert scale. The scale was the same for all characteristics and is

defined as follows: 7—Very high, 6—High, 5—Moderately high, 4—Neither high nor low, 3—Moderately low, 2—Low, 1—Very low.

11 Level of abstraction The breadth of impact of a requirement. Does the requirement affect a module, a

component, an entire sub-system, etc.

Scale for 11: This was measured with a 7-point ordinal scale; this scale was used because there is an ordering in the levels of abstraction (high to

low for example), but this ordering does not denote specific, discrete values, with equal intervals between them [32]

12 Type of requirement This categorizes the requirement into functional, non-functional, and business

quality, where there can be more than one category for non-functional and

business qualities. Examples of categories in this scale include functional,

standards, legal, performance, and safety

220 Requirements Eng (2010) 15:215–233

123



www.manaraa.com

because although our unit of observation is the require-

ments teams, the unit of analysis was the individual

requirements since we were interested in the differences in

the requirements characteristics and not differences in

teams. The subsequent analysis (see Sect. 4.1) supports this

study design and reconciles the difference between the unit

of analysis and unit of observation.

3.4 Participants

We used convenience sampling [22] to involve 25 final-

year RE students in the study. In order to conduct the study

involving students, we received consent from the ethics

board at the University of Western Ontario. The threat of

using students as participants is discussed in the external

threats to validity section (Sect. 3.6.2). The participants

were randomly assigned to groups of two with one group of

3, making a total of 12 groups. The groups were then

randomly divided into two types: the so-called architecture

(SA) groups and non-architecture (non-SA) groups.

To ensure that the participants had sufficient knowledge

to conduct the project, they were given theory knowledge

in RE and two pre-requisite requirements projects prior to

the project to learn and familiarize themselves with RE

practices such as elicitation, analysis, negotiation, valida-

tion, and prioritization. The assessment of the pre-requisite

projects and RE knowledge indicated a satisfactory level of

attainment to conduct the investigative project. Subsequent

to this, SA learning sessions were given to the SA groups

so that they could perform architectural analysis required

for the project. These sessions focused on understanding

architectural documentation and the ADD/ATAM methods

for architecture design and assessment [3].

3.5 The RE project

Each of the 12 groups was given the same set of require-

ments elicitation tasks for upgrading a software infra-

structure for a fictitious bank:

1. To add support for Interac service to the existing

system.

2. To create a new wireless banking application that

would allow customers to carry out basic banking

transactions through their cell phones or PDAs.

3. To reduce the operational cost of the telephone

banking system.

4. To increase modifiability in the web banking system.

These tasks were chosen since they constituted a size-

able and complex RE project that would still be feasible

within the constraints of a University course. We

held numerous peer-review sessions with a total of six

experts to validate these four tasks with respect to their

appropriateness in giving a project that met both peda-

gogical and study needs.

Both types of groups, SA and non-SA, were given the

requirements for the existing system. These pre-existing

requirements were baselined from a previous project [13].

The requirements elicitation process and techniques fol-

lowed are described in [24].

Also baselined was the pre-existing architectural docu-

ment (developed using the ADD method [3]) from the

same previous project [13], given to each of the SA-groups

only. This document included architectural information

such as numerous different tactics, quality attribute sce-

narios, decomposition views, user/layer views, class views,

component and connector views, deployment views, work

assignment views, sequence diagrams and state charts. The

RE project, including logging of the elicited requirements,

took 2 months to complete.

3.6 Data collection

The data collected for analysis were the ratings for

the requirements characteristics (defined in Table 1) for the

elicited requirements (to answer Q1—see Sect. 3.1) and the

list of architectural aspects that affected the SA-group

during the RE process (to answer Q2—see Sect. 3.1). In the

following two subsections, we discuss these two disparate

sources of data.

3.6.1 Requirements characteristics ratings

The primary source of data is the requirements ratings

for the requirements characteristics (defined in Table 1),

where an instrument was designed for this purpose (see

‘‘Appendix’’). Three external researchers rated the

requirements using this instrument. This process involved

examining the title, description, and rationale for each

requirement and giving a rating on the appropriate scale of

each and every characteristic.

Since the data was subjective and different raters could

measure constructs in different ways, an inter-rater agree-

ment method from [15] was used to establish rating reli-

ability. Basically, the ratings for each characteristic for

each requirement were assigned to two researchers. The

two researchers independently performed the ratings. Fol-

lowing this, if necessary, the researchers harmonized their

ratings to finalize a rating. In particular, if there was a

difference of more than one in the ratings, a third

researcher also performed the rating to reconcile the dif-

ference. All ratings were conducted blindly, i.e., without

knowledge of which group authored which requirements.

The researchers used for the rating procedure all had

3–10 years experience in RE, and the minimum academic

level was a Ph.D. candidate. Prior to the ratings collected

Requirements Eng (2010) 15:215–233 221

123



www.manaraa.com

for this study, a pilot rating session was conducted on a

subset of the requirements with all researchers involved,

the purpose of which was to train the raters on the rating

procedure. Table 2 shows the ratings of two example

requirements, R1 and R2.

R1 When performing an Interac transaction, if the pri-

mary server is busy, it will send a ‘Server busy’ response

signal followed by a secondary server IP. The client

machine should then have to re-establish connection with

the secondary server and perform a second request. This

results in less demand on the primary server.

R2 The customer shall be able to add or remove com-

panies from their profile to which bills are being paid using

their mobile application (cell phones, PDA’s, etc.).

The first two numbers in each column represent ratings

given to the requirement for the given characteristic by two

independent raters (see Table 1 for explanation of scale).

The third value in bold italic is the final, agreed upon value.

One example interpretation of this instance of ratings is

that R1 is high on technological focus (7 out of 7) but low

on user-focus (1.5 out of 7) and R2 is high on user-focus

(6.5 out of 7) but low on technological focus (1 out of 7).

Likewise, interpretations can be made about other charac-

teristics and their ratings. Because the scale for the char-

acteristics Abstraction and Requirement Type are different,

we omit them in the example for simplicity.

3.6.2 Architectural aspects

We used a tool from [28] that had the dual purpose of

supporting the subjects’ project and of recording relevant

data for this study. For example, the tool maintained a

pervasive list of both the original requirements (as well as

their evolution) and new requirements introduced by each

team. Also, the tool recorded data from the SA-groups

(only) about the specific parts of the architecture that had

an impact on the requirements. To help ensure the quality

of the data gathered in this tool, regular meetings with each

project team were held to clear up issues and to monitor the

progress.

3.7 Threats to validity

We classify threats into those internal and those external to

the project, as well as construct and conclusion validity.

We focus here only on those considered relevant to our

study (see Table 3). Description of other types of threats

can be found in [22].

3.7.1 Internal validity

Internal validity deals with whether we can infer that a

relationship between two variables is causal, and not due to

any confounding factors [22]. There are numerous specific

types of internal validity threats [22], we discuss here only

the threats that applied to our study and the procedures we

employed to contain the threat.

Differential selection: This is when possible character-

istics of the subjects may, by chance, differ between the

two types of groups and possibly affect the quality of the

data. In our study, such a characteristic is the participants’

SE educational and industrial-experience backgrounds;

participants with differing SE background could possibly

perform differently in the project. To identify any such

Table 3 Results of nested

ANOVA testing
Requirement

characteristic

Independent

factor

Degrees of

freedom

F-value Significance

Focus on user needs SA 2 267.038 0.000

Team 10 2.914 0.001

Focus on technology needs SA 2 335.914 0.000

Team 10 2.688 0.003

Architectural relevance SA 2 2148.621 0.000

Team 10 1.233 0.266

Importance SA 2 3244.578 0.000

Team 10 1.830 0.052

Table 2 Sample rating of requirements

Requirement

id

Focus

on cost

Focus

on time

Focus on

quality

Focus on

user’s needs

Focus on

client’s needs

Focus on

tech needs

Testability Implementability Importance Arch

relevance

R1 4, 4, 4 4, 4, 4 4, 4, 4 2, 1, 1.5 1, 1, 1 7, 7, 7 7, 6, 6.5 7, 7, 7 5, 4, 4.5 2, 3, 2.5

R2 4, 3, 3.5 4, 3, 3.5 4, 4, 4 7, 6, 6.5 1, 2, 1.5 1, 1, 1 7, 7, 7 4, 5, 4.5 5, 4, 4.5 4, 4, 4

222 Requirements Eng (2010) 15:215–233

123



www.manaraa.com

possible outlier participants, prior to the study, each par-

ticipant was interviewed about their background experi-

ence so that any subjects with prior SE industry experience

could be identified. None had any such experience. This,

coupled with the knowledge that every participant was a

full-time computer science student and had taken similar

software engineering courses for specialization, ensures

that they had undergone similar SE training. Furthermore,

weekly review sessions were used to identify any obvious

outliers during the project, which we did not find.

Differential mortality: This occurs when a physical or

mental change occurs to participants during study that is

not ‘‘equal’’ between the two types of study groups. This

threat existed in our study because of the duration of the

participants’ project (see Sect. 3.5), which lasted approxi-

mately 2 months. To contain this threat, the researchers

reviewed and assessed weekly submissions of work and

collected data. Additionally, weekly motivation meetings

were held to further monitor the participants’ progress. At

the conclusion of the study, all initial participants remained

in the study and no effects of the differential mortality

threat were observed.

Researcher bias: This occurs when the researcher,

knowingly or unknowingly, influences the outcome of the

study. This threat exists in our study because of the sub-

jective nature of the requirements characteristics ratings

(see Sect. 3.6.1). To mitigate this threat, multiple

researchers and domain experts, and an ‘‘open’’ process

(with no direct investment in study), were used in the study

processes. These are recognized techniques for dealing

with researcher bias [22].

3.7.2 External validity

External validity refers to the degree to which the results of

a study can be generalized across a population, time or

place [22]. Population validity can exist when generalizing

to industry; the reason for using students in our study was

the availability sampling technique. It would have been

extremely difficult (if not impossible) to conduct this first-

time controlled study in industry. The use of students

should not diminish the results of this study, as important

results have been found in other SE studies when student-

based studies have been conducted (e.g., in requirements

triage [5]; code inspection [8]; and lead-time impact

assessment [18]). We do acknowledge the threat in gen-

eralizing to experienced requirements engineers; however,

there is no evidence suggesting that the results could not be

generalizable to, at the very least, novice requirements

engineers in industry [18]. Regardless, exploratory studies

such as this are an important first step toward determining

initial results on a particular research issue that can provide

the groundwork for future studies in wider contexts.

3.7.3 Construct validity

Construct validity refers to the extent to which a mea-

surement corresponds to theoretical concepts (i.e., con-

structs) concerning the phenomenon under study [22].

In this study, the constructs were the requirements char-

acteristics. These were measured by an instrument created

and used by external researchers (see Sect. 3.6.1). We held

numerous peer-review sessions with a total of six experts

to validate the measurement instrument with respect to

the theoretical constructs we wanted to investigate (see

Sect. 3.1).

3.7.4 Conclusion validity

Conclusion validity is the degree to which conclusions we

make based on our findings are reasonable [22]. There are

three ways in which conclusion validity can be improved in

a quantitative-based study: statistical power, reliability, and

proper implementation of study methods. In our study,

statistical power (or lack thereof) is not an issue, as our

statistical tests are performed on ratings from approxi-

mately 900 requirements which were elicited by the 12 RE

teams. Also, the study design and statistical tests (see Sects.

3.3, 4.1, respectively) accounted for the difference between

the unit of analysis (RE teams) and unit of observation

(requirements). As discussed in Sect. 3.6.1, we used mul-

tiple researchers to rate each requirement in order to

achieve a reliability of the rankings. Lastly, the researchers

performing the ratings were trained prior to the actual

rankings to ensure they properly carried out their task.

4 Data analysis, results and interpretations

We now describe the analysis of the data gathered, the

findings, and their interpretation. The implications of the

findings are described in Sect. 5.

4.1 Data analysis

The SA-groups collectively produced 443 newly elicited

requirements; whereas the non-SA-groups collectively

produced 458 newly elicited requirements. Note that, nor-

mally, in a controlled experiment, the analysis of data

would be conducted on the randomized construct (in our

case, the teams). However, we are primarily interested in

exploring whether there are significant differences in the

‘‘characteristics’’ of the requirements elicited by the teams

(SA vs. non-SA) and not simply in the teams themselves.

Thus, the analysis we have conducted acknowledges the

team randomization and ‘‘takes into account the extent to

which outcomes (i.e., characteristic ratings of the

Requirements Eng (2010) 15:215–233 223

123



www.manaraa.com

requirements) differ across all the teams ‘‘independent of

the treatment effect’’ (i.e., ignoring the presence of SA for

the treatment group. This is an established procedure [35]’’.

Specifically, we conducted separate statistical analysis that

incorporated the possible effect of the different teams on

the characteristic ratings. That is, we performed a two-way

nested ANOVA3 with the presence of SA as a fixed vari-

able and the teams as a random variable. This statistical

analysis corresponds to the experimental design used for

this study (see Sect. 3.3) and is used to test the hypotheses

(see Sect. 3.2). The results of the two-way nested ANOVA

are presented and discussed in the next section. We qual-

itatively analyze identified architectural aspects that

affected the SA-groups’ RE process and link them as

sources for the differences reported in the preceding

analysis.

4.2 Results and interpretations

We now describe the results and interpretations from the

data analysis that was performed. In the following sub-

section, we discuss the results from the hypothesis testing

(answer for Q1—‘‘which requirements characteristics were

affected’’—see Sect. 3.1). We then discuss more detailed

results regarding each requirement characteristic. Lastly,

we present the findings from Q2 (see Sect. 3.1) where we

qualitatively link the SA aspects that were determined to

have affected the RE process with the requirements char-

acteristics that showed statistical significance in the pre-

ceding analysis.

4.2.1 Requirements characteristics hypothesis testing

Recall that in Sect. 4.1, we mentioned the two-way nested

ANOVA which tests for the effect, on the requirements

characteristics, of both the SA and being in a different

requirements team. Here, we now present and interpret the

results from this two-way nested ANOVA. From Table 3,

we see the characteristics that showed statistically signifi-

cant difference due to the presence/absence of an SA when

controlling for the ‘‘team effect’’ (focus on user needs,

focus on technology needs, architectural relevance and

importance—all significant at p = 0.000). This means that

there is virtually no possibility that these results were due

to chance. The Table also shows that there was a statisti-

cally significant effect from the teams for the characteris-

tics focus on user needs and focus on technology needs

(p = 0.001 and 0.003, respectively). The characteristics

architectural relevance and importance did not show a

statistical significant difference for the team variable. The

characteristics in this Table were the only characteristics

that showed a significant difference for either the SA or

team variable.4

What this means is that both the presence/absence of the

SA and being on a different team had an effect on the user

and technology focus characteristics. Because this study

was more technically oriented, we did not collect more

specific data on why being in a different requirements

teams led to an effect on these particular requirements

characteristics. However, there are some intuitive expla-

nations for why this interesting phenomenon occurred. It is

possible that different individual personal interests and

capabilities played a role in changing the ‘‘flavor’’ of the

requirements. For example, if the teams had individuals

who preferred downstream processes and were thus more

‘‘solution’’ driven (e.g., designing, testing, coding.), then

these teams’ requirements would have a more technologi-

cal bias regardless of the presence/absence of an SA.

Conversely, if the teams had individuals who preferred the

more human aspect of SE (e.g., RE, human–computer

interaction.), then their requirements would necessarily be

more user-focused. The role of human personality and

capability is outside the scope of this study; however, it

could prove to be an interesting avenue for future empirical

research and is the focus of one of our emerging hypoth-

eses in Sect. 5.5.

Irrespective of the team effect exhibited above for the

two requirements characteristics, we have demonstrated

that the SA does have a significant effect on the require-

ments characteristics and so we discuss the results for the

rest of this section at the requirements level which is the

focus of this paper.

4.2.2 Detailed requirements characteristics results

We now discuss in more detail the results and their inter-

pretations pertaining to each of the requirements charac-

teristics (described in Table 1). Recall, from Table 1 in

Sect. 3.1, that 10 of the 12 characteristics (e.g., focus on

cost, focus on time, focus on quality.) were measurable on

the Likert scale; whereas the remaining 2 (level of

abstraction and type of requirement) were measurable on

the ordinal and nominal scales.

4.2.2.1 Technological needs versus user needs On aver-

age, the SA-groups scored higher for focus on technological

needs (4.12 vs. 3.42, Table 4); whereas the non-SA-groups

scored higher for focus on user needs (3.65 vs. 3.26). There

3 The 2-way nested ANOVA testing was done using SPSS 16.0 from

SPSS Inc. (http://www.spss.com).

4 The ANOVA test can only be conducted on the Likert-based

requirements characteristics and not the ordinal-based characteristics

(abstraction and type of requirement). These ordinal-based charac-

teristics are analyzed separately in Sect. 4.2.2.5.

224 Requirements Eng (2010) 15:215–233

123

http://www.spss.com


www.manaraa.com

was thus a trade-off between the characteristics of the

requirements from the two types of groups. Usually, when

focus on technological needs was high (scoring a 5, 6 or 7

on the Likert scale), focus on user needs was low (scoring a

1, 2 or 3) and vice versa. The notion of this trade-off is

supported by a follow-up test that was conducted, Spear-

man’s rho test, which showed a statistically significant

(p = 0.007) inverse correlation between the two charac-

teristics. From the perspective of RE processes, this data

suggests that the SA-groups had technological needs higher

than user needs in 52.9% of their requirements compared to

41.6% for the non-SA-groups. Likewise, the non-SA-

groups had user needs higher than technological needs in

46% of their requirements compared to 37% for the

SA-groups. Table 5 characterizes the bias toward techno-

logical and user needs for each type of group.

The surface-level reasoning for this difference could be

that the SA-groups oriented themselves toward the tech-

nological arrangement of the system; whereas the non-SA-

group oriented themselves toward the user perspective of

the system. However, the fact that the SA-group, either

knowingly or unknowingly, ‘‘shortchanged’’ the user-ori-

ented requirements is rather surprising.

What this means is that the potential benefactors of these

requirements (i.e., the various stakeholders) are not having

their needs fully met, which could then lead to negative

feedback later in downstream processes or when the given

product is released, resulting in lower customer satisfaction,

poorer product quality, development rework, etc.

4.2.2.2 Architectural relevance Another characteristic

where the two types of groups scored differently is archi-

tectural relevance (see Table 4), (i.e., the degree to which a

requirement will affect the architecture [3]). The mean

ratings were 4.59: SA-groups vs. 4.12: non-SA-groups.

Examining the data more closely, the SA-groups had more

requirements (56) [13%] that scored 7—extremely high

than the non-SA-groups (23)[5%]. Conversely, the non-

SA-groups had more requirements that scored 1–3 (extre-

mely low to slightly low) (163) [37%] than the SA-groups

(161) [27%].

The reason for this variance could be that having access

to the system’s architecture, the SA-groups are better

poised to question the architectural relevance of an elicited

requirement in their decision making.

Ultimately, they seem to be have selected more archi-

tecturally relevant requirements from their base-set in their

solution strategy than have the non-SA-groups.

4.2.2.3 Importance The two types of groups also scored

differently with regard to the level of importance of

the requirements they produced (see Table 4), namely, the

degree to which the success of the system depends on the

implementation of a requirement. Upon closer examina-

tion, the difference for this characteristic is similar to that

for architectural relevance in that the SA-groups had more

requirements that scored 6 or 7 (quite high and extremely

high) was 255 (59%) than the non-SA-groups (216) [50%].

The non-SA-groups had more requirements that scored 1–3

(extremely low to slightly low) (62) [14%] than the SA-

groups (27) [6%]. Both types of groups scored closely for

4—neither high nor low (42 [10%] for the SA-groups, 46

[11%] for the non-SA-groups) and 5—slightly high (106

[25%] and 109 [25%]).

This shows that the SA-groups were better able to elicit

the kinds of requirements that would be important to the

success of the system than the non-SA-groups. This result

is surprising because importance of a requirement for

system success is not influenced only by its technological

or user orientation. Other influencing factors include return

on investment, cost, implementability, resource consump-

tion, etc. Rather, these orientations are simply orthogonal.

One would thus not expect a statistically significant dif-

ference between the SA and non-SA groups. The cause of

the difference thus calls for further investigation.

4.2.2.4 Categories with no difference The means of the

ratings for the requirements from the SA-groups and non-

SA-groups were similar in a number of categories: focus on

time, cost, and quality; implementability; and focus on

client needs. Testability was higher for the SA-groups at

p = 0.06, close to a statistically significant result, and so it

is a characteristic of interest for future studies. Thus, for

these six characteristics, there is no evidence to support the

rejection of the null hypothesis (the presence of a SA has

no impact on characteristic—see Sect. 3.1).

Table 4 Mean scores of the two types of groups for selected qualities

Group Focus on user needs Focus on tech. needs Arch. relevance Imp.

Mean SA 3.26 4.12 4.59 5.63

Non-SA 3.65 3.42 4.12 5.28

Cohen’s effect size Large Large Large Large

The Cohen’s effect size indicates the difference between the two types of groups is ‘‘large’’ [35], meaning that there is not only a statistical

difference between the two groups, but that the difference is substantial for real-world application of the results (e.g., making a business

decision). What this means in terms of the real-world RE processes and products is discussed in the next subsection

Requirements Eng (2010) 15:215–233 225

123



www.manaraa.com

What this means is that the characteristics of the

requirements gathered in the presence or absence of the

architecture by the respective two types of groups were

statistically not different in so far as these six particular

characteristics are concerned.

4.2.2.5 Abstraction and type Two of the requirements

characteristics (see Table 1), requirement type and level of

abstraction, were rated on a nominal and an ordinal scale,

respectively.5

For the characteristic level of abstraction, the SA-groups

had more requirements that scored high values (5 and 6)

(71 [16%] vs. 38 [9%]), which denote requirements having

a greater breadth of impact (sub-system level, system

level, inter-system level). The non-SA-groups had more

requirements with lower scores (0 and 1) (58 [13%] vs. 37

[9%]), indicating a small breadth of impact (module or

component level). The NHST reveals that the difference in

frequency counts is statistically significant (p = 0.001) so

we conclude that there is evidence to support the rejection

of the null hypothesis for this requirements characteristic.

An inference of the SA-groups’ higher score on the level

of abstraction quality over non-SA-groups’ is that, not

having access to the architecture, the non-SA-groups were

dealing with requirements at a functional level which are

dealt with at an individual component’s level. On the other

hand, the SA-groups’ requirements are more cross-cutting

across the architecture, since they elicited requirements

that dealt with the integration of new sub-systems and

components with the existing SA.

For rating the characteristic requirement type, require-

ments were analyzed according to a priori nominal cate-

gories from standard RE literature [24]. Examples of these

categories include usability, performance, delivery, reli-

ability, etc. The dataset shows that the SA-groups produced

more implementation (62 vs. 50) and interoperability (51

vs. 30) requirements; whereas the non-SA-groups produced

more usability (51 vs. 20) and functional (99 vs. 81)

requirements. NHSTs for this characteristic (type of

requirement) show that the differences between the two

types of groups are statistically significant (p = 0.013) so

we conclude that there is evidence to support the rejection

of the null hypothesis for this requirements characteristic.

The observation here is consistent with our earlier

observation (see Sect. 4.2.2.1) that the SA-groups were

more focused on back-end technical issues; whereas the

non-SA-groups were more focused on user issues.

4.2.3 SA aspects vs. requirements characteristics

To answer Q2 (see Sect. 3.1), we can now link aspects of

the SA identified by the SA-groups as affecting the specific

requirements characteristics that showed a statistically

significant difference (see Sect. 4.2.1). First, requirements

of the SA-groups will be divided according to whether they

were affected by the SA.6 Thus, we now have three sets of

data: (1) those of the SA-groups which were affected by

SA, (2) those of the SA-groups which were not affected by

SA, and (3) the requirements of the non-SA-groups. This

division will be used to show that the differences measured

between the two types of groups are a direct result of the

requirements being affected by the architecture, that is, the

presence or absence SA is the ‘‘cause’’ of the specific types

of differences observed between the two types of groups.

To confirm that the six requirements characteristics

identified in Q1 (see Sect. 3.1):

• focus on user needs, focus on technological needs,

architectural relevance, and importance

• type and level of abstraction.

were indeed affected because of the SA, we now qual-

itatively examine the differences in the three sets of data

identified previously (1, 2 and 3) with respect to these six

requirements characteristics.

Subsection 4.2.3.1 discusses these six requirements

characteristics and the differences with respect to them in

the three identified groups, and Subsect. 4.2.3.2 relates

specific architectural aspects and their impact on the above-

mentioned six requirement characteristics.

4.2.3.1 Causal impact of SA on requirements character-

istics Earlier findings (see Sect. 4.2.2) indicated that

requirements from the SA-groups generally scored lower

with regard to focus on user needs and higher with regard

to focus on technological needs, architectural relevance,

and importance. Table 6 shows this along with the statis-

tical significance of this new distribution.

On average, when the architecture was not affecting a

requirement (188 requirements), both the SA and non-SA

Table 5 Focus on technological needs versus user needs in the two

types of groups

SA-groups

(%)

Non-SA-groups

(%)

Higher focus on user needs 37 46

Equal focus 10 14

Higher focus on technological needs 53 42

5 Because of the scale types used for these two attributes, the Cohen

Effect Size tests cannot be applied.

6 In total, there were 148 requirements that were enabled by the

architecture, 126 requirements that were constrained and 51 require-

ments that were influenced. However, since we found no statistically

significant differences between enabled, constrained and influenced

requirements they will simply be grouped as affected requirements.

226 Requirements Eng (2010) 15:215–233

123



www.manaraa.com

groups scored similarly for three characteristics: focus on

user needs, architectural relevance, and importance. For

these three characteristics, it can now be seen that the

differences in means that were observed earlier between

the two types of groups (SA-groups: 3.26, 4.59, and 5.63

vs. Non-SA-groups: 3.65, 4.12, 5.28, respectively—see

Table 4) were caused almost entirely by affected require-

ments (255 in Table 6). That is, we see ‘‘decreased’’

architectural effect on the characteristic focus on user

needs, and ‘‘increased’’ effect on the characteristics

architectural relevance, and importance. For focus on

technological needs, the difference in means reported

earlier (SA-groups: 4.12 vs. Non-SA-groups: 3.42 in

Table 5) was not caused entirely by affected requirements

but was certainly augmented by them (SA-group not

affected: 3.69 vs. SA-group affected: 4.4 in Table 6).

For the characteristics level of abstraction and type, we

did not find any causal link between (1) the differences

between the two groups (see Sect. 4.2.2) and (2) the SA.

4.2.3.2 Architectural source of the impact In the previ-

ous section, we saw which particular requirements char-

acteristics were affected by the SA (see Table 6). However,

we do not know as yet which particular aspects of the SA

were the causes of those effects—this is the focus in this

subsection. Determining specific aspects of the SA affect-

ing particular requirements characteristics can help during

future elicitation of requirements, for example, in being

vigilant about any architectural implications on develop-

ment cost, system quality and schedule and, accordingly,

negotiate the requirements with the stakeholders.

In Table 7, we can see that four specific SA aspects

affected requirements that exhibited the properties in

Table 6: existing hardware, non-functional characteristics

(same sub-system), non-functional characteristics (differ-

ent sub-system), and architectural patterns. Requirements

affected by one of these four architectural aspects showed

lower mean values for focus on user needs and higher

mean values of focus on technological needs, architec-

tural relevance, and importance. This suggests that

these four architectural aspects had a substantial and

consistent impact on the requirements elicited by the

SA-groups.

Modifiability was another SA aspect that affected

requirements exhibiting three of the four characteristics

(i.e., scored higher means than the groups not affected by

SA): focus on technological needs (4.26), architectural

relevance (5.12), and importance (5.98). However, unlike

the four SA aspects described earlier, these requirements

scored higher for focus on user needs than did require-

ments which were not affected by the architecture (3.95 vs.

3.56). Without further data and analysis, it is difficult to

discern the extent of the impact of modifiability on focus on

user needs.

Table 6 Characteristics of requirements and the architecture’s effect

Group Role of SA Number of requirement’s. Focus on user needs Focus on tech. needs Arch. rel. Importance

Non-SA Not affected 458 3.63 3.42 4.12 5.28

SA Not affected 188 3.56 3.69 4.24 5.37

Affected 255 3.1 4.4 4.8 5.8

NHST p-value Chi-square 0.046 0.001 0.001 0.003

Table 7 The source of architectural effects and the requirements characteristics affected

Requirements characteristics

Group SA role SA aspect Number of

requirement’s

Focus on

user needs

Focus on

tech. needs

Arch.

relevance

Importance

Non-SA None N/A 458 3.63 3.42 4.12 5.28

SA None N/A 188 3.56 3.69 4.24 5.37

Affected Existing hardware 9 3.00 5.67 5.11 5.89

NF characteristics (same sub-system) 53 1.94 5.32 4.77 5.85

NF characteristics (different sub-system) 100 3.29 4.55 4.88 5.93

Arch. Patterns 25 2.88 3.80 4.54 6.25

Modifiability 42 3.95 4.26 5.12 5.98

The numbers in this table do not equal the totals in Table 6 because Table 6 includes requirements affected by all nine identified architectural

aspects, whereas Table 7 contains only those five aspects that had an impact on requirements with differing characteristics

Requirements Eng (2010) 15:215–233 227

123



www.manaraa.com

4.3 Summary of results

The following are the key results of the study:

• Given access to the architecture, the analysts tend to

elicit approximately 10% more technologically oriented

requirements; without access to the architecture, they

tend to elicit approximately 10% more user needs–

oriented requirements.

• For a given type of group (SA or non-SA), there is an

inverse relationship within the set of elicited require-

ments between the characteristics technological needs

and user needs; as the quantity of one increases the

other decreases (e.g., requirements focused on user

needs have less focus on technology needs—46 vs.

37%, respectively).

• Given access to the architecture, the analysts tend to

elicit 10% more architecturally relevant and 10% more

important requirements.

• Given access to the architecture, the analysts elicited

approximately 7% more abstract requirements

(i.e., those with cross-cutting concerns across system

requirements) than analysts without access to the

architecture.

• Given access to the architecture, the analysts elicited

more implementation (62 vs. 50 requirements) and

interoperability (51 vs. 30) requirements.

• Without access to the architecture, the analysts elicited

more requirements of type usability (51 vs. 20) and

functionality (99 vs. 81).

• Specific architectural aspects were identified that

affected the requirements characteristics: Existing

hardware, NF characteristics (same sub-system), NF

characteristics (different sub-system), architectural

patterns, and modifiability.

Until now, there was no scientific data on the above-

mentioned issues. This can therefore be considered an

important step toward building a grounded theory on the

impact of SA (or non-SA) on RE. While the findings may

be interesting, it is rather unfortunate that the various SA

and non-SA groups had long disbanded and therefore not

accessible by the time the data analysis was completed.

Thus, we could not obtain their perspective of our infer-

ences. The next section discusses example implications of

our findings.

5 Implications

We discuss the implications of the described findings on

such issues as RE process engineering, post-requirements

analysis, RE tools, traceability management, and further

empirical work in RE.

5.1 RE process engineering

The findings described in Sect. 4.3 raise some interesting

questions, such as should the SA always be used in the RE

process as promoted by the literature [27, 38], and as

strongly supported by our survey results (see Sect. 1).

Could there be some conditions when it would be advisable

not to use SA in RE? Of course, the considerations behind

these questions are such factors as project costs, time-to-

market, system quality, profitability, innovation, sustain-

ability, and human factors.

We have identified three key cases which merit con-

sideration in the design of RE processes: (1) new innova-

tive system; (2) mature system; and (3) system with user

and technology balance.

When evolving a relatively new product, the business

strategy might be to focus more on innovative features (so

as to attract a large customer-base) than on refining tech-

nical system attributes such as reliability, security, perfor-

mance (so as to stabilize the system) [34]. In this scenario,

management can determine whether the cost/benefit of the

RE process would be better if the influence of the existing

SA on elicited requirements was omitted or minimized, if

not entirely in the RE process then at least at the outset of

the RE process.

Likewise, in a mature product, with a large-dependent

customer-base, it would be imperative that new require-

ments do not destabilize system quality and, accordingly, it

would be advisable to use SA in RE. For example, we saw

that involving SA in RE led to more global or architec-

turally relevant requirements (see Sect. 4.2.2.2), whereas,

absence of SA in RE in this scenario could lead to myopic

requirements. In turn, this could lead to increased devel-

opment backtracking to fix architectural problems or

duplication of features (both functional and non-functional)

across the system [23].

In the cases where there is a need for a user- and

technology-focused requirements, we need to design the

RE process to have mechanisms built into ensure that the

characteristics of the requirements are not lop-sided in

favor of SA and against user-focus (or vice versa). For

example, in Sect. 4.2.2.1, we saw that involving SA in the

RE process short-changed user-focused requirements.

Consequently, not having vigilance about the impact of SA

on RE could result in system qualities that may not satisfy

diverse stakeholders’ interests.

These are but specific examples. There are many pro-

ject and organizational factors that could influence when

to utilize the SA in a RE process, for example: size and

competency of the development team, development

paradigm used (e.g., agile vs. iterative), familiarity of SA

by the development team, budget, etc. Therefore, in

deploying the RE process, these multitude of factors

228 Requirements Eng (2010) 15:215–233

123



www.manaraa.com

should be considered when planning the inclusion of the

SA in the RE process.

5.2 Post-requirements analysis

As permitted by a project-specific situation, it is prudent to

examine the requirements being elicited – as a post-RE or

post-project exercise – to detect any biases counteracting

business goals, which could then be adjusted in the sub-

sequent elicitation efforts. For example, by integrating the

rating (see Table 2 in Sect. 3.6.1) into post-requirements

(or post-development) analysis, a project could gather

(release-based or timed) quantitative data on requirements

characteristics. This would create a history of the ‘‘flavor’’

of the system, as dictated by the characteristics of the

requirements (e.g., trends on quality attribute biases, user

needs focus, technological focus.). By analyzing such

trends, management can assess, periodically, whether the

evolving system is aligned with the current and future

organizational goals. For example, a trend heavily in favor

of ‘‘user-focus’’ coupled with heightened architectural

defects could indicate inadequate consideration of SA

during the RE (and development) processes. Based on such

analysis, tweaking the requirements and the associated RE

processes can help align the requirements characteristics to

the system and business goals. Figure 1 shows an example

process model of how the requirements rating method

could be integrated in a software development process.

Unlike other implications in this paper, this one is rooted

in the empirical procedures of the study and not the find-

ings. There is precedence for this idea. For example, in

software effort estimation [21], the collection and analysis

procedures of software defects, size and effort data has

been integrated into a software estimation tool. Likewise,

in software process improvement [10], the authors propose

the use of historical, exploratory research studies to iden-

tify process improvement opportunities in industrial pro-

jects. Finally, in software maintenance [33], the analysis of

software metrics (such as development effort, defaults, and

component changes) in past releases of a software project

is used to automatically identify components most likely to

cause rework.

5.3 RE tools

The realization that specific characteristics of new

requirements are affected by particular aspects of existing

system architectures (as depicted in Table 7) opens up

possibilities for a new generation of RE tools. In particular,

requirements management tools (such as DOORS and

Requisite pro) and goal-oriented modeling tools (such as i*

[43] and KAOS [25]) could be enhanced with a product-

centric knowledge-base that accumulates, over a span of

many releases, how different aspects of the evolving sys-

tem architecture affect requirements characteristics (e.g., as

shown for one evolutionary iteration in Table 7). Such

tools thus would have a characteristic of becoming more

and more mature over time while enhancing the elicitation,

analysis, and reasoning capabilities of the requirements

engineers.

5.4 Traceability management

Recent work in [16] encourages value-based requirements

traceability, as opposed to early research which attempted

at all encompassing traceability (implemented in tools such

as DOORS and Requisite Pro) which is known to be

wasteful in terms of future use, and thus has not gained

wide acceptance in practice [1]. In this paper, we show how

empirical studies can lead to discovery of targeted product

Fig. 1 Integration of

requirements rating method in

software development process

Requirements Eng (2010) 15:215–233 229

123



www.manaraa.com

dependencies and relationships (e.g., between SA and

requirements) that can be worth tracking during software

evolution.

In Table 6, for example, we see that 255 requirements

(58%) were affected by the SA. Also, Table 7 indicates

the particular SA aspects that affected the requirements

with particular characteristics. Furthermore, previous

research [28] has already shown the different effect types

of SA on requirements (e.g., SA as a constraint on new

requirements or as an enabler of new requirements). Thus,

by collating these different pieces of information, it would

be possible to create targeted traceable links. For exam-

ple, by linking those architectural aspects (e.g., compo-

nents with particular non-functional characteristics) that

are historically known to constrain certain types of

requirements, it could help in speeding up detection and

analysis of new risky requirements that are in conflict

with the baseline architecture. We can see that empiri-

cally derived targeted links would (a) reduce the burden

considerably in making the select-few links in the first

place and (b) render invaluable information upon usage of

traceability tools during RE.

5.5 Further empirical studies in RE

Based on the findings of the exploratory study, we raise the

following example emergent hypotheses:

H1 Requirements elicited from a RE process that involve

analysis of a current architecture will be more technolog-

ically focused than a RE process that does not include such

analysis.

This hypothesis emerges from the finding in Sect.

4.2.2.1 and improves upon the null hypothesis used in this

study by providing a direction of the effect (i.e., SA

analysis implies more technological focus). While the

finding on technology focus vs. users-need focus may

seem intuitive, further testing of this hypothesis in dif-

ferent domains and project contexts would not only

confirm whether these results are generalizable across

different population and settings (see Sect. 3.6.2) but

would also indicate the variance in extents across them.

This could help tune the RE process specific to the

domain concerned.

H2 Requirements elicited from a RE process that do not

analyze the current architecture will be more user-focused

than a RE process that does not include such analysis.

In Sect. 4.2.2.1, the results show that requirements

elicited in the absence of an existing architecture are more

user-focused than requirements in the presence of an

existing architecture. The motivation for this hypothesis

follows from H1 above.

H3 Requirements elicited when the current architecture is

analyzed are considered more important for system success

than without such analysis.

This hypothesis is rooted in the finding from Sect.

4.2.2.3. This result is surprising and seems more based on

factors outside of technology and user needs and is there-

fore difficult to discern whether this would hold across

other project domains and business contexts.

H4 Requirements elicited when the current architecture is

analyzed are more architecturally relevant than require-

ments without such analysis.

This hypothesis emerges from the finding in Sect.

4.2.2.4, and the motivation for this hypothesis follows from

H1 above.

H5 An RE process that does not include analysis of current

architecture will output more innovative requirements.

A requirement characteristic that was not measured in

this study was innovation. This was due to the fact that the

project domain was banking which is not a new domain,

and thus it would be difficult to measure innovation in such

a system. However, it is an important characteristic that we

initially did want to investigate. Although this hypothesis is

not directly derived from the findings, we include it here

because this characteristic should be investigated if the

domain permits. It seems that, by intuition, this charac-

teristic could be affected (most likely constrained) by the

analysis of a current architecture. The investigation of this

hypothesis complements recent research effort [26] in

improving the process of eliciting innovative requirements.

H6 A requirements elicitation team with motivation and

expertise in system solution is more likely to elicit

requirements that have technological bias regardless of the

absence or presence of an existing system architecture.

This hypothesis emerges from the finding in Sect. 4.2.1

where it was shown that the simply being in a different

requirements team had a significant effect on the techno-

logical bias of the requirements. One possible explanation

for this phenomena occurring is that the motivation and

expertise of the team members was more solution-oriented

and accordingly biased the requirements.

H7 A requirements elicitation team with motivation and

expertise in a system’s context (e.g., human–computer

interaction and end-user satisfaction) is more likely to elicit

requirements that user-focused regardless of the absence or

presence of an existing system architecture.

This hypothesis emerges from the finding in Sect. 4.2.1,

and the motivation for this hypothesis follows from H6

above.

230 Requirements Eng (2010) 15:215–233

123



www.manaraa.com

To test hypotheses H1–H5, controlled experiments with

the same type of project setup as described in this paper

(see Sect. 3) would need to be designed. The study design

for testing H6–H7 would be more difficult in randomized

controlled experiment, and thus, a quasi-experiment design

would be more suitable for these cases.

6 Conclusions

While the role of software architecture (SA) in require-

ments engineering (RE) has been discussed several times

over the past decade [19, 27, 38], no scientific studies have

ever been conducted to explore the quantitative relation-

ship between SA and requirements. In this paper, we

describe a controlled study, involving 12 teams, investi-

gating the characteristics of new requirements in the

presence or absence of an existing SA.

In a nutshell, we found that of the 12 requirements

characteristics identified (see Table 1), the following were

significantly affected by the presence or absence of the SA

(see Sect. 4.3): focus on technological needs, architectural

relevance, importance, level of abstraction, requirement

type, and focus on user needs. We did not find SA effects

on the remaining characteristics (see Sect. 4.2.2.4). We

then probed the results further from the perspective of the

specific architectural aspects that affected these character-

istics and found five such aspects (Existing hardware, NF

characteristics (same sub-system), NF characteristics

(different sub-system), architectural patterns, and modifi-

ability). From these findings, we discuss potentially useful

implications in the areas of RE process engineering,

requirements alignment with business goals, RE tools,

traceability management, and future empirical work based

on four emergent hypotheses from this study.

While these findings contribute new scientific knowl-

edge concerning SA-requirements interaction, let us not

forget that this was only one exploratory controlled study

on a particular domain (Banking system). Significant as it

is, we advise caution when making business or project

decisions based on the findings of this foundational study

alone! Rather, we encourage other researchers to conduct

confirmatory studies in other domains and contexts to help

build grounded theory on the impact of SA on RE.

Though our study, in principle, can be replicated in

both industry and academia, each of these contexts has its

own limitations to consider when planning replications of

the study. Conducting controlled studies in industry would

be extremely difficult, if not impossible, due to the

unavailability of equivalent projects and the inability to

impose research control (i.e., presence or absence of SA

in the RE process). More likely, the chances are better to

conduct controlled studies and perform hypothesis testing

in academia using qualified students as participants. This,

however, does have the issue of being able to generalize

the results to industrial contexts. Despite this threat,

studies such as these are still a critical stepping-stone to

conducting ‘‘case studies’’ in industry. Case studies in

industry would be invaluable for providing an industrial

perspective on the impact of SA on RE. These studies can

be carried out by analyzing the existing requirements of

projects where the RE processes have either involved SA

or not. In particular, data from different projects with

varying levels of complexity, and in different domains,

would help solidify the body of knowledge in this

research area.

Acknowledgments This work was, in part, supported by Natural

Science and Engineering Research Council (NSERC) of Canada. We

are also grateful to the study participants, and to the researchers who

conducted the ratings of the requirements. Lastly, we are thankful to

the anonymous reviewers for their helpful suggestions.

Appendix: requirements ratings data collection

instrument

The requirements ratings data collection instrument was

administered to each requirements rater to collect the

requirements rating data (see Sect. 3.6.1). The instrument

was operationalized through an MS Excel Spreadsheet file,

and the organization of the spreadsheet is organized from

the structure of Table 8 below.

Table 8 Requirements rating data entry template

Requirements information Requirements characteristics

Requirement. ID Title Description Rationale Cost Time Quality User needs Tech. needs … (cont’d.)

R1

Rater comments

R2

Rater comments

R3

Rater comments

Requirements Eng (2010) 15:215–233 231

123



www.manaraa.com

Essentially, each requirement takes up two rows of this

table. The first row is where the information pertaining to

the requirement is given to the raters and where they enter

the ratings for the different requirements characteristics.

Specifically, for each requirement, there are four pieces of

information given to the reviewer: requirements ID, a title,

a description, and a rationale. The requirement ID is a

numerical value that uniquely identifies the requirement.

The title explicitly indicates what part of the system the

requirement is referring to (Tele-Banking, Wireless

Banking, Web Banking or Interac.) The description is the

requirement itself, and the rationale provides additional

reasoning as to why the requirement is necessary. These

four pieces of information are given in the first four col-

umns of the Table. The next twelve columns7 are where the

rater enters their rating for the particular requirements

characteristic given in the column header. The raters filled

out this part of the instrument with reference to the list of

requirements characteristics, their definitions, and the

scales to use for each characteristic (see Table 1). In the

second row for a given requirement, the rater can option-

ally leave any comments regarding their specific ratings for

a particular requirement characteristic entry.

Note that in order to remove possible researcher bias

during the ratings process, the Table does not contain any

information that can associate given requirements with

specific teams that elicited the requirements and whether

they had access to the existing SA during their RE project.

The results of each individual rater’s assessment are

merged into another MS Excel sheet which is organized

based on the structure from Table 2 in Sect. 3.6.1, where

the inter-rater agreement procedure from Sect. 3.6.1 can be

conducted.

References

1. Arkley P, Riddle S (2005) Overcoming the traceability benefit

problem. In: 13th IEEE international conference on requirements

engineering (RE’05), Paris, France, pp 385–389

2. Basili VR, Weiss D (1984) A methodology for collecting valid

software engineering data. IEEE Trans OnSoft Eng, pp 728–738

3. Bass L, Clements P, Kazman R (2003) Software architecture in

practice, 2nd edn. Addison-Wesley, Reading

4. Bayer J, Muthig D, Widen T (2000) Customizable domain

analysis. In: The proceedings of the first international symposium

of generative and component-based software engineering (GCSE

‘99), Lecture Notes in Computer Science, Springer, pp. 178–194

5. Berander P (2004) Using students as subjects in requirements

prioritization. In: Proceedings of the 7th international conference

on empirical assessment & evaluation in software engineering,

pp. 95–102

6. Breitman K, Sampaio do Prado JC (2000) Scenario evolution: a

closer view on relationships. In: Fourth international conference

on requirements engineering (RE’00), Illinois, US, pp 95–107

7. Burgess C, Dattani I, Hughes G, May J, Rees K (2001) Using

influence diagrams to aid the management of software change. J

Requir Eng 6(3):173–182

8. Carver J, Shull F, Basili V (2003) Observational studies to

accelerate process experience in classroom studies: an evaluation.

In: Proceedings of the 2003 international symposium on empir-

ical software engineering (ISESE ‘03), Rome, Italy, pp 72–79

9. Castillo E, Gutiérrez M, Hadi A (1997) Learning bayesian net-

works, Expert systems and probabilistic network models. Mono-

graphs in computer science. Springer, New York, pp 481–528

10. Cook J, Votta LG, Wolf AL, Wolf AL (1998) Cost-Effective

analysis of in-place software processes. IEEE Trans Softw Eng

24(8):650–663

11. El Emam K, Madhavji N (1995) Measuring the success of

requirements engineering processes. In: Proceedings of the 2nd

IEEE international symposium on requirements engineering,

pp 204–211

12. Etien A, Salinesi C (2005) Managing requirements in a co-evo-

lution context. In: 13th IEEE international requirements engi-

neering conference (RE’05), Paris, France, pp 125–134

13. Ferrari R, Madhavji NH (2008) Software architecting without

requirements knowledge and experience: what are the repercus-

sions? J Syst Softw 81(9):1470–1490

14. Ferreira S, Collofello J, Collofello J, Shunk D, Mackulak G,

Mackulak G (2009) Understanding the effects of requirements

volatility in software engineering by using analytical modeling

and software process simulation. J Syst Softw 82(10):1568–1577

15. Fusaro P, El Emam K, Smith B (1997) Evaluating the interrater

agreement of process capability ratings. In: Proceedings of the

4th international software metrics symposium, pp 2–11

16. Heindl M, Biffl S (2005) A case study on value-based require-

ments tracing. In: Proceedings of the 10th European software

engineering conference held jointly with 13th ACM SIGSOFT

international symposium on foundations of software engineering,

Lisbon, Portugal, pp 60–69

17. IEEE SWEBOK (2004) Guide to the software engineering body

of knowledge: 2004 Version. IEEE and IEEE Computer Society

project. \http://www.swebok.org/[
18. Host M, Regnell B, Wohlin C (2000) Using students as sub-

jects—a comparative study of students and professionals in lead-

time impact assessment, Empirical Software Engineering,

pp 201–214

19. Jackson M (1994) The role of architecture in requirements

engineering. In: Proceedings of the 1st international conference

on requirements engineering (RE ‘94’), pp 241

20. John I, Muthig D, Sody P, Tolzmann E (2002) Efficient and

systematic software evolution through domain analysis. In: 10th

IEEE joint international requirements engineering conference

(RE ‘02), Essen, Germany, pp 237–245

21. Johnson PM, Moore CA, Dane JA, Brewer RS (2000) Empiri-

cally guided software effort guesstimation. IEEE Software 17(6)

22. Johnson RB, Christensan L (2003) Educational research: quan-

titative, qualitative and mixed approaches. www.southalabama.

edu/coe/bset/johnson/dr_johnson/2lectures.htm. Date last acces-

sed June 2009

23. Kamiya T, Kusumoto S, Inoue K (2002) CCFinder: a multilin-

guistic token-based code clone detection system for large scale

source code. IEEE Trans Softw Eng 28(7):654–670

24. Kotonya G, Sommerville I (1998) Requir Eng. Wiley, England

25. Van Lamsweerde A (2003) From system goals to software

architecture. In: Bernardo M, Inverardi P (eds) Formal methods

for software architectures. LNCS 2804, Springer, Berlin, pp 25–

43

7 Due to readability of the template, not all columns with charac-

teristics are shown. See Table 1 for full list.

232 Requirements Eng (2010) 15:215–233

123

http://www.swebok.org/
http://www.southalabama.edu/coe/bset/johnson/dr_johnson/2lectures.htm
http://www.southalabama.edu/coe/bset/johnson/dr_johnson/2lectures.htm


www.manaraa.com

26. Maiden N, Manning S, Robertson S, Greenwood J (2004) Inte-

grating creativity workshops into structured requirements pro-

cesses. In: Proceedings of the 5th conference on designing

interactive systems: processes, practices, methods, and tech-

niques, Cambridge, MA, US, pp 113–122

27. Mead N (1994) The role of software architecture in requirements

engineering. In: Proceedings of the 1st international conference

on requirements engineering, p 242

28. Miller J, Ferrari R, Madhavji NH (2008) Architectural effects on

requirements decisions: an exploratory study. In: 7th working

international conference on software architecture, Vancouver,

pp 231–240

29. Miller J, Ferrari R, Madhavji NH (2009) Characteristics of new

requirements in the presence or absence of an existing system

architecture. In: 17th international conference on requirements

engineering (RE ‘09), Atlanta, United States, pp 5–14

30. Nuseibeh B (2001) Weaving together requirements and archi-

tectures. IEEE Comput 34(3):115–117

31. Nuseibeh B, Easterbrook S (2000) Requirements engineering: a

roadmap. In: Proceedings of the 22nd international conference on

software engineering (ICSE), pp 27–46

32. Pett MA (1997) Nonparametric statistics for health care research:

statistics for small samples and unusual distributions, 2nd edn.

SAGE, Beverley Hills

33. Porter AA, Selby RW (1990) Empirically guided software

development using metric-based classification trees. IEEE Softw

7(2):46–54

34. Rajlich VT, Bennett KH (2000) A staged model for the software

life cycle. IEEE Comput 33(7):66–71

35. Rao PV (1997) Statistical research methods in the life sciences.

Brooks/Cole, Belmont

36. Rolland C, Salinesi C, Etien A (2004) Eliciting gaps in require-

ments change. J Requir Eng 1:1–15

37. Shaw M (2003) Writing good software engineering research

papers: minitutorial. In: Proceedings of the 25th international

conference on software engineering (ICSE 2003), Portland, USA,

Tutorial Session, pp 726–736

38. Shekaran C (1994) Panel overview: the role of software archi-

tecture in requirements engineering. In: Proceedings of 1st

international conference on requirements engineering, p 239

39. Software Requirements to Architectures Workshop (STRAW’01

& ‘03) (2001 and 2003) June 2001, Toronto, Canada; May 2003,

Portland, USA

40. Tichy WF, Lukowicz, Prechelt L, Ernst A (1995) Experimental

evaluation in computer science: a quantitative study. J Syst Softw

(January), 1–18

41. Vilella K, Doerr J, Gross A (2008) Proactively managing the

evolution of embedded system requirements. In: 16th interna-

tional conference on requirements engineering (RE ‘08), Delhi,

India, pp 13–22

42. Wieringa RJ, Heerkens J (2006) The methodological soundness

of requirements engineering papers: a conceptual framework and

two case studies. Requir Eng J 11:295–307

43. Yu E (1997) Towards modelling and reasoning support for early-

phase requirements engineering. In: Proceedings of the 3rd IEEE

international symposium on requirements engineering (RE’97)

January 6–8, 1997, Washington, DC, USA, pp 226–235

Requirements Eng (2010) 15:215–233 233

123



www.manaraa.com

Copyright of Requirements Engineering is the property of Springer Science & Business Media B.V. and its

content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's

express written permission. However, users may print, download, or email articles for individual use.


